The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro.

نویسندگان

  • S N Murphy
  • S A Thayer
  • R J Miller
چکیده

Using microspectrofluorimetry and the calcium-sensitive dye fura-2, we examined the effect of excitatory amino acids on [Ca2+]i in single striatal neurons in vitro. N-methyl-D-aspartic acid (NMDA) produced rapid increases in [Ca2+]i. These were blocked by DL-2-amino-5-phosphonovaleric acid (AP5), by Mg2+, by phencyclidine, and by MK801. The block produced by Mg2+ and MK801 could be relieved by depolarizing cells with veratridine. When external Ca2+ was removed, NMDA no longer increased [Ca2+]i. Furthermore, the effects of NMDA were not blocked by concentrations of La3+ that blocked depolarization induced rises in [Ca2+]i. Substitution of Na+o by Li+ did not block the effects of NMDA. Concentrations of L-glutamate greater than or equal to 10(-6) M also increased [Ca2+]i. The effects of moderate concentrations of glutamate were blocked by AP5 but not by La3+ or by substitution of Na+ by Li+. The effects of glutamate were blocked by removal of external Ca2+ but were not blocked by concentrations of Mg2+ or MK801 that completely blocked the effects of NMDA. The glutamate analogs kainic acid (KA) and quisqualic acid also increased [Ca2+]i. The effects of KA were blocked by removal of external Ca2+ but not by La3+, Mg2+, MK801, or replacement of Na+ by Li+. Although AP5 was able to block the effects of KA partially, very high concentrations were required. These results may be explained by considering the properties of glutamate-receptor-linked ionophores. Excitatory amino acid induced increases in [Ca2+]i are consistent with the possibility that Ca2+ mediates excitatory amino acid induced neuronal degeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons.

We investigated the effect of various excitatory amino acids on intracellular free Ca2+ concentration ( [Ca2+]i) in single mouse hippocampal neurons in vitro by using the Ca2+-sensitive dye fura-2. In normal physiological solution, glutamate, kainate, N-methyl-D-aspartate, and quisqualate all produced increases in [Ca2+]i. When all extracellular Ca2+ was removed, kainate and N-methyl-D-aspartat...

متن کامل

Pharmacological Inhibition of the Na/Ca Exchanger Enhances Depolarizations Induced by Oxygen/Glucose Deprivation but Not Responses to Excitatory Amino Acids in Rat Striatal Neurons

Background and Purpose—Neuronal Na/Ca exchanger plays a relevant role in maintaining intracellular Ca and Na levels under physiological and pathological conditions. However, the role of this exchanger in excitotoxicity and ischemia-induced neuronal injury is still controversial and has never been studied in the same neuronal subtypes. Methods—We investigated the effects of bepridil and 39,49-di...

متن کامل

The role of intracellular free calcium in motor neuron disease.

The intracellular calcium (Ca2+) concentrations of motoneurons can be altered by the influx of Ca2+ into the cell by the opening of voltage-dependent Ca2+ channels and ligand-gated channels linked to Ca2+ influx, especially by the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Intracellular Ca2+ concentration is also affected by the release of Ca2+ buffered in mitochondria ...

متن کامل

Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture.

The mechanisms leading to Ca2+-dependent and Ca2+-independent GABA release were studied on highly purified striatal neurons developed in primary culture. Ca2+-dependent GABA release, which represents about 75% of the 56 mM K+ effect was totally inhibited when striatal neurons were first exposed to tetanus toxin (TnTx) (10 micrograms/ml) for 24 hr. The K+ effect was potentiated when 1 mM nipecot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 1987